-/output/
+output/
+__pycache__/
+++ /dev/null
-import java.util.*;
-
-public class Graph {
- public Set<Node> nodes = new HashSet<>();
-
- // only needed for repeated search
- public void reset() {
- for (Node n : nodes) {
- n.seen = false;
- n.dist = Long.MAX_VALUE;
- n.prev = null;
- }
- }
-
- public void search(Node root) {
- Set<Node> q = new HashSet<>();
- root.dist = 0l;
- q.add(root);
-
- while (!q.isEmpty()) {
- Node a = Collections.min(q);
- q.remove(a);
- if (a.seen) continue;
- a.seen = true;
- for (Node b : a.adj.keySet()) {
- long d = a.dist + a.adj.get(b);
- if (d < b.dist) {
- b.dist = d;
- b.prev = a;
- q.add(b);
- }
- }
- }
- }
-}
-
-class Node implements Comparable<Node> {
- public boolean seen;
- public long dist = Long.MAX_VALUE;
- public Node prev;
- public Map<Node, Long> adj = new HashMap<>();
-
- public boolean equals(Object o) {
- return dist == ((Node) o).dist;
- }
-
- public int compareTo(Node n) {
- return Long.compare(dist, n.dist);
- }
-}
+++ /dev/null
-import java.util.Collections;
-
-public class Main {
- public static void main(String[] args) {
- Graph graph = new Graph();
- Node a = new Node();
- Node b = new Node();
- Node c = new Node();
- Node d = new Node();
- Node e = new Node();
- Node f = new Node();
-
- // add each node to `graph.nodes'
- Collections.addAll(graph.nodes, new Node[] {a,b,c,d,e,f});
-
- // make edges between nodes
- a.adj.put(c, 6l);
- b.adj.put(a, 9l);
- c.adj.put(a, 6l);
- d.adj.put(b, 2l);
- d.adj.put(c, 11l);
- e.adj.put(b, 14l);
- e.adj.put(d, 9l);
- e.adj.put(f, 7l);
- f.adj.put(c, 15l);
- f.adj.put(d, 10l);
-
- // search the whole graph, starting at node `e'
- graph.search(e);
- System.out.println(a.dist);
- System.out.println(a.prev == b);
- // be sure to reset the graph before performing another search
- graph.reset();
- }
-}
+++ /dev/null
-import math
-
-class Node:
- def __init__(s, data = None):
- s.data = data
- s.adj = {}
-
- def search(s):
- dists = {s: 0}
- prev = {}
- expl = set()
- q = {s}
- while q:
- a = min(q, key = lambda n: dists.get(n, math.inf))
- q.remove(a)
- if a not in expl:
- expl.add(a)
- for n in a.adj:
- d = dists[a] + a.adj[n]
- if d < dists.get(n, math.inf):
- dists[n] = d
- prev[n] = a
- q.add(n)
- return (dists, prev)
+++ /dev/null
-a = Node()
-b = Node('foo bar')
-c = Node()
-d = Node([1, 2, 3])
-e = Node()
-
-# each node has an adjacency `dict'; each key is the destination of an outward edge, and the corresponding value is the edge cost
-a.adj[b] = 5
-b.adj[c] = 5
-c.adj[d] = 5
-a.adj[d] = 30
-
-(dists, prev) = a.search()
-assert e not in dists
-assert dists[d] == 15
-assert prev[c] == b
{
-\newcommand{\BasePath}{\ProjRootPrefix/algorithms/dijkstra}
+\newcommand{\ImplPath}{\ProjRootPrefix/impl/dijkstra}
\TopicHeader{Weighted Shortest Path: Dijkstra's Agorithm}
\TopicSubHeader{Python 3}
- \inputminted{python}{\BasePath/impl/python3/dijkstra.py}
+ \inputminted{python}{\ImplPath/python3/dijkstra.py}
The \texttt{Node} constructor accepts a \texttt{data} parameter.
Any value can be passed in, and it will be stored in the node to facilitate associating the nodes with data specific to the problem.
Here's a usage example:
- \inputminted{python}{\BasePath/impl/python3/usage.py}
+ \inputminted{python}{\ImplPath/python3/usage.py}
In this implementation, two dictionaries are returned which provide the distance and previous-node information.
To see if a node is reachable, simply check whether the node is a key in the first (distance) dictionary.
\TopicSubHeader{Java}
\centerline{\texttt{Graph.java}}
- \inputminted{java}{\BasePath/impl/java/Graph.java}
+ \inputminted{java}{\ImplPath/java/Graph.java}
The code may be used as follows.
If you need to attach some data to the nodes, you could add a field to the \texttt{Node} class or use a \texttt{Map} to keep track of the association.
- \inputminted{java}{\BasePath/impl/java/Main.java}
+ \inputminted{java}{\ImplPath/java/Usage.java}
The visited flag, previous-node links, and distances are accessible as fields on the \texttt{Node} objects after the search.
}
+++ /dev/null
-import java.util.*;
-
-public class Hull {
- static long dir(Point a, Point b, Point c) {
- return (b.x - a.x)*(c.y - a.y) - (b.y - a.y)*(c.x - a.x);
- }
- static List<Point> hull(Set<Point> pts) {
- if (pts.isEmpty()) {
- return new ArrayList<>();
- }
- Point s = Collections.min(pts, new Comparator<Point>() {
- public int compare(Point a, Point b) {
- int yCmp = Long.compare(a.y, b.y);
- return yCmp == 0 ? Long.compare(a.x, b.x) : yCmp;
- }
- });
- LinkedList<Point> srt = new LinkedList<>(pts);
- srt.remove(s);
- Collections.sort(srt, new Comparator<Point>() {
- double cos(Point p) {
- return (p.x - s.x) / Math.sqrt((s.x - p.x)*(s.x - p.x) + (s.y - p.y)*(s.y - p.y));
- }
- public int compare(Point a, Point b) {
- return -Double.compare(cos(a), cos(b));
- }
- });
- srt.addFirst(s);
- if (srt.size() < 3) {
- return srt;
- }
- LinkedList<Point> out = new LinkedList<>(srt.subList(0, 3));
- for (Point p : srt.subList(3, srt.size())) {
- while (dir(out.get(out.size() - 2), out.get(out.size() - 1), p) <= 0) {
- out.removeLast();
- }
- out.add(p);
- }
- return out;
- }
-}
-
-class Point {
- long x;
- long y;
- Point(long x, long y) {
- this.x = x;
- this.y = y;
- }
-}
+++ /dev/null
-import java.util.*;
-
-public class Main {
- public static void main(String[] args) {
- Point a = new Point(0, 0);
- Point b = new Point(-2, 2);
- Point c = new Point(0, 4);
- Point d = new Point(2, 2);
- Point e = new Point(0, 2);
-
- List<Point> hull = Hull.hull(new HashSet<>(Arrays.asList(new Point[] {a, b, c, d, e})));
- assert hull.equals(Arrays.asList(new Point[] {a, d, c, b}));
- }
-}
+++ /dev/null
-import math
-
-def hull(points):
- if not points:
- return []
- sx, sy = s = min(points, key = lambda p: p[::-1])
- cos = lambda p: (p[0] - sx) / math.sqrt((sx - p[0])**2 + (sy - p[1])**2)
- dir_ = lambda ax, ay, bx, by, cx, cy: (bx - ax)*(cy - ay) - (by - ay)*(cx - ax)
- points = [s] + sorted(points - {s}, key = cos, reverse = True)
- stack = points[:3]
- for p in points[3:]:
- while dir_(*stack[-2], *stack[-1], *p) <= 0:
- stack.pop()
- stack.append(p)
- return stack
+++ /dev/null
-points = {(0,0), (-2,2), (0,4), (2,2), (0,2)}
-assert hull(points) == [(0,0), (2,2), (0,4), (-2,2)]
{
-\newcommand{\BasePath}{\ProjRootPrefix/algorithms/hull-2d}
+\newcommand{\ImplPath}{\ProjRootPrefix/impl/hull-2d}
\TopicHeader{Convex Hull (2D)}
Convex hull algorithms are given a collection of points and output a subset of just the outermost points.
- Formally, the output is the points of a polygon within which lie all points in the input.
+ Formally, the output is the points of a convex polygon within which lie all points in the input.
The implementations here use a technique called Graham scan to compute the convex hull with time complexity $O(n \log n)$, where $n$ is the number of input points.
The output points are ordered: the bottom-most (and then leftmost) point appears first, then the remaining hull points in counterclockwise order.
\TopicSubHeader{Java}
\centerline{\texttt{Hull.java}}
- \inputminted{java}{\BasePath/impl/java/Hull.java}
+ \inputminted{java}{\ImplPath/java/Hull.java}
This may be used as follows:
- \inputminted{java}{\BasePath/impl/java/Main.java}
+ \inputminted{java}{\ImplPath/java/Usage.java}
\TopicSubHeader{Python 3}
- \inputminted{python}{\BasePath/impl/python3/hull.py}
+ \inputminted{python}{\ImplPath/python3/hull.py}
To run the algorithm, pass a set of $(x, y)$ pairs (\texttt{tuple}s) to \texttt{hull}.
A sample usage:
- \inputminted{python}{\BasePath/impl/python3/usage.py}
+ \inputminted{python}{\ImplPath/python3/usage.py}
}
+++ /dev/null
-import java.util.*;
-
-class FlowNet {
- Map<Node, Boolean> nodes = new HashMap<>();
- long value;
- Node source, sink;
-
- void addNode(Node n) {
- nodes.put(n, false);
- }
-
- Edge edgeFor(Node one, Node two) {
- return one.edgeTo.containsKey(two) ? one.edgeTo.get(two) : two.edgeTo.get(one);
- }
-
- long findMax() {
- long value = 0;
-
- AP augPath = getPath();
- while (augPath != null) {
- Node from, to = augPath.path.pop();
- while (!augPath.path.isEmpty()) {
- from = to;
- to = augPath.path.pop();
- edgeFor(from, to).sendTo(to, augPath.value);
- }
- value += augPath.value;
- augPath = getPath();
- }
-
- return value;
- }
-
- // for min cut
- Set<Node> srcSide() {
- Set<Node> srcSide = new HashSet<>();
- for (Node n : nodes.keySet()) {
- if (nodes.get(n)) {
- srcSide.add(n);
- }
- }
- return srcSide;
- }
-
- AP getPath() {
- Map<Node, Node> prev = new HashMap<>();
- Queue<Node> q = new LinkedList<>();
- q.offer(source);
- prev.put(source, null);
- while (!q.isEmpty()) {
- Node n = q.poll();
- for (Node other : n.adj) {
- Edge e = edgeFor(n, other);
- if (e.capTo(other) > 0 && !prev.containsKey(other)) {
- prev.put(other, n);
- q.offer(other);
- }
- }
- }
- for (Node n : nodes.keySet()) {
- nodes.put(n, prev.keySet().contains(n));
- }
-
- if (nodes.get(sink)) {
- LinkedList<Node> path = new LinkedList<>();
- long value = Long.MAX_VALUE;
-
- Node n = sink, p = prev.get(n);
- path.push(n);
- while (p != null) {
- value = Math.min(value, edgeFor(p, n).capTo(n));
- path.push(p);
- n = p;
- p = prev.get(p);
- }
-
- AP ap = new AP();
- ap.path = path;
- ap.value = value;
- return ap;
- } else {
- return null;
- }
- }
-
- class AP {
- LinkedList<Node> path;
- long value;
- }
-}
-
-class Node {
- Set<Node> adj = new HashSet<>();
- Map<Node, Edge> edgeTo = new HashMap<>();
-}
-
-class Edge {
- Node from, to;
- long cap, flow;
-
- Edge(Node f, Node t, long c) {
- from = f;
- to = t;
- cap = c;
- f.adj.add(t);
- t.adj.add(f);
- f.edgeTo.put(t, this);
- }
-
- long capTo(Node n) {
- return n == to ? cap - flow : flow;
- }
-
- void sendTo(Node n, long amt) {
- flow += n == to ? amt : -amt;
- }
-}
+++ /dev/null
-public class Main {
- public static void main(String[] args) {
- FlowNet net = new FlowNet();
- Node s = new Node();
- Node t = new Node();
- Node u = new Node();
- Node v = new Node();
- for (Node n : new Node[] {s,t,u,v}) {
- net.addNode(n);
- }
- net.source = s;
- net.sink = t;
- new Edge(s, u, 20);
- new Edge(s, v, 10);
- new Edge(u, v, 30);
- new Edge(u, t, 10);
- new Edge(v, t, 20);
- System.out.println(net.findMax());
- for (Node n : net.srcSide()) {
- char name = 0;
- if (n.equals(s)) name = 's';
- if (n.equals(t)) name = 't';
- if (n.equals(u)) name = 'u';
- if (n.equals(v)) name = 'v';
- System.out.println(name);
- }
- }
-}
+++ /dev/null
-Usage:
-
- FlowNet net = new FlowNet();
-
- Node s = new Node();
- Node t = new Node();
- Node u = new Node();
- Node v = new Node();
- for (Node n : new Node[] {s,t,u,v}) {
- net.addNode(n);
- }
- net.source = s;
- net.sink = t;
-
- new Edge(s, u, 20);
- new Edge(s, v, 10);
- new Edge(u, v, 30);
- new Edge(u, t, 10);
- new Edge(v, t, 20);
-
- System.out.println(net.findMax());
- System.out.println(net.srcSide());
+++ /dev/null
-from collections import deque
-
-class Edge:
- def __init__(s, frm, to, cap):
- s.frm = frm
- s.to = to
- s.cap = cap
- s.flow = 0
-
- def cap_to(s, node):
- return {s.frm: s.flow, s.to: s.cap - s.flow}[node]
-
- def add_to(s, node, amt):
- s.flow += {s.frm: -amt, s.to: amt}[node]
-
- def other(s, node):
- return {s.frm: s.to, s.to: s.frm}[node]
-
-class Node:
- def __init__(s, data = None):
- s.data = data
- s.edges = set()
-
- @staticmethod
- def edge(f, t, cap):
- e = Edge(f, t, cap)
- f.edges.add(e)
- t.edges.add(e)
-
-def ff(nodes, src, sink):
- def path():
- prev = {}
- q = deque([src])
- while q:
- n = q.popleft()
- for e in n.edges:
- o = e.other(n)
- if o not in prev and e.cap_to(o) > 0:
- prev[o] = e
- q.append(o)
- d = sink
- p = deque()
- while d in prev and d is not src:
- p.appendleft((prev[d], d))
- d = prev[d].other(d)
- return p if d is src else []
-
- p = path()
- val = 0
- while p:
- amt = min(e.cap_to(d) for e, d in p)
- val += amt
- for e, d in p:
- e.add_to(d, amt)
- p = path()
-
- cut_src = set()
- w = [src]
- while w:
- n = w.pop()
- cut_src.add(n)
- for e in n.edges:
- o = e.other(n)
- if o not in cut_src and e.cap_to(o) != 0:
- w.append(o)
-
- return (val, cut_src)
{
-\newcommand{\BasePath}{\ProjRootPrefix/algorithms/network-flows}
+\newcommand{\ImplPath}{\ProjRootPrefix/impl/network-flows}
\TopicHeader{Network Flows: Edmonds--Karp}
\TopicSubHeader{Python 3}
- \inputminted{python}{\BasePath/impl/python3/flows.py}
+ \inputminted{python}{\ImplPath/python3/flows.py}
+
+ To use the code:
+
+ \inputminted{python}{\ImplPath/python3/usage.py}
+
+ The \texttt{cut\_src} variable here is a set of node objects representing the source side of the minimum cut.
+ If the set \texttt{n} contains all nodes in the network, the sink side is computed by \texttt{n - cut\_src}.
}
r'''
This file is responsible for configuring the document build.
Some/all parameters are passed to LaTeX as generated code, which is probably a bad idea, but oh well.
-
-The keys in the `config' dictionary are the command names to assign in LaTeX.
-So if I use `FooBar' in the dictionary, then the command `\FooBar' is available to the LaTeX code.
-Note that an error will be raised if one of these names matches an existing LaTeX command.
'''
config = {
# whether to insert page breaks before reference items to ease lookup
'RefPageBrk': False,
- # languages for which to exclude implementations (java, python3)
+ # languages for which to exclude implementations (java, python3) (to be implemented)
'exclude_langs': [],
}
Contributors
- - Jakob Cornell (creator): LaTeX code, build system, Python/Java algorithm implementations
+ - Jakob Cornell, creator: LaTeX code, build system, Python/Java algorithm implementations
Attribution
- Dijkstra's Algorithm implementations and complexity analysis based on content here: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm (reused under CC-BY-SA)
\usepackage[margin=1in]{geometry} % for margin adjustment
\usepackage{parskip} % replaces paragraph indentation with vertical space
\usepackage{float} % used for captions on code listings
-\usepackage{ifthen} % for conditional inclusion (page breaks)
+\usepackage{ifthen} % for conditional compilation
\newcommand{\ProjRootPrefix}{..}
--- /dev/null
+import java.util.*;
+
+public class Graph {
+ public Set<Node> nodes = new HashSet<>();
+
+ // only needed for repeated search
+ public void reset() {
+ for (Node n : nodes) {
+ n.seen = false;
+ n.dist = Long.MAX_VALUE;
+ n.prev = null;
+ }
+ }
+
+ public void search(Node root) {
+ Set<Node> q = new HashSet<>();
+ root.dist = 0l;
+ q.add(root);
+
+ while (!q.isEmpty()) {
+ Node a = Collections.min(q);
+ q.remove(a);
+ if (a.seen) continue;
+ a.seen = true;
+ for (Node b : a.adj.keySet()) {
+ long d = a.dist + a.adj.get(b);
+ if (d < b.dist) {
+ b.dist = d;
+ b.prev = a;
+ q.add(b);
+ }
+ }
+ }
+ }
+}
+
+class Node implements Comparable<Node> {
+ public boolean seen;
+ public long dist = Long.MAX_VALUE;
+ public Node prev;
+ public Map<Node, Long> adj = new HashMap<>();
+
+ public boolean equals(Object o) {
+ return dist == ((Node) o).dist;
+ }
+
+ public int compareTo(Node n) {
+ return Long.compare(dist, n.dist);
+ }
+}
--- /dev/null
+import java.util.Map;
+import java.util.HashMap;
+import java.util.Collections;
+
+public class Test {
+ public static void main(String[] args) {
+ Graph graph = new Graph();
+ Node a = new Node();
+ Node b = new Node();
+ Node c = new Node();
+ Node d = new Node();
+ Node e = new Node();
+ Node f = new Node();
+
+ Collections.addAll(graph.nodes, new Node[] {a,b,c,d,e,f});
+
+ a.adj.put(c, 6l);
+ b.adj.put(a, 9l);
+ c.adj.put(a, 6l);
+ d.adj.put(b, 2l);
+ d.adj.put(c, 11l);
+ e.adj.put(b, 14l);
+ e.adj.put(d, 9l);
+ e.adj.put(f, 7l);
+ f.adj.put(c, 15l);
+ f.adj.put(d, 10l);
+
+ graph.search(e);
+
+ Map<Node, Long> actDists = new HashMap<>();
+ for (Node n : graph.nodes) {
+ actDists.put(n, n.dist);
+ }
+ Map<Node, Long> expDists = new HashMap<>();
+ expDists.put(a, 20l);
+ expDists.put(b, 11l);
+ expDists.put(c, 20l);
+ expDists.put(d, 9l);
+ expDists.put(e, 0l);
+ expDists.put(f, 7l);
+ assert actDists.equals(expDists);
+
+ Map<Node, Node> actPrevs = new HashMap<>();
+ for (Node n : graph.nodes) {
+ actPrevs.put(n, n.prev);
+ }
+ Map<Node, Node> expPrevs = new HashMap<>();
+ expPrevs.put(a, b);
+ expPrevs.put(b, d);
+ expPrevs.put(c, d);
+ expPrevs.put(d, e);
+ expPrevs.put(e, null);
+ expPrevs.put(f, e);
+ assert actPrevs.equals(expPrevs);
+
+ System.out.println("Pass");
+ }
+}
--- /dev/null
+import java.util.Collections;
+
+public class Usage {
+ public static void main(String[] args) {
+ Graph graph = new Graph();
+ Node a = new Node();
+ Node b = new Node();
+ Node c = new Node();
+
+ // add nodes to graph
+ graph.nodes.add(a);
+ graph.nodes.add(b);
+ graph.nodes.add(c);
+
+ a.adj.put(b, 5l); // make an edge from `a' to `b' of weight 5
+ b.adj.put(c, 3l);
+ c.adj.put(a, 10l);
+ c.adj.put(b, 0l);
+
+ // search the whole graph, starting at node `a'
+ graph.search(a);
+
+ System.out.println(b.dist);
+ System.out.println(c.prev == b);
+
+ // be sure to reset the graph before performing another search
+ graph.reset();
+ }
+}
--- /dev/null
+.PHONY: test
+
+SOURCES := Graph.java Test.java Usage.java
+
+test: output/Test.class
+ @java -enableassertions -cp output Test
+
+output/Test.class: $(SOURCES)
+ @mkdir -p output
+ javac -d output Test.java Usage.java
--- /dev/null
+import math
+
+class Node:
+ def __init__(s, data = None):
+ s.data = data
+ s.adj = {}
+
+ def search(s):
+ dists = {s: 0}
+ prev = {}
+ expl = set()
+ q = {s}
+ while q:
+ a = min(q, key = lambda n: dists.get(n, math.inf))
+ q.remove(a)
+ if a not in expl:
+ expl.add(a)
+ for n in a.adj:
+ d = dists[a] + a.adj[n]
+ if d < dists.get(n, math.inf):
+ dists[n] = d
+ prev[n] = a
+ q.add(n)
+ return (dists, prev)
--- /dev/null
+.PHONY: test
+
+SOURCES := dijkstra.py test.py
+
+test: $(SOURCES)
+ @python3 test.py
--- /dev/null
+from dijkstra import *
+
+a, b, c, d, e, f = [Node() for _ in range(6)]
+
+a.adj[c] = 6
+b.adj[a] = 9
+c.adj[a] = 6
+d.adj[b] = 2
+d.adj[c] = 11
+e.adj[b] = 14
+e.adj[d] = 9
+e.adj[f] = 7
+f.adj[c] = 15
+f.adj[d] = 10
+
+(dists, prev) = e.search()
+
+assert dists == {
+ a: 20,
+ b: 11,
+ c: 20,
+ d: 9,
+ e: 0,
+ f: 7,
+}
+
+assert prev == {
+ a: b,
+ b: d,
+ c: d,
+ d: e,
+ f: e,
+}
+
+print("Pass")
--- /dev/null
+a = Node()
+b = Node('foo bar')
+c = Node()
+d = Node([1, 2, 3])
+e = Node()
+
+a.adj[b] = 5 # make an edge from `a' to `b' with weight 5
+b.adj[c] = 5
+c.adj[d] = 5
+a.adj[d] = 30
+
+(dists, prev) = a.search() # search the graph outward from `a'
+
+assert dists[d] == 15
+assert prev[c] == b
--- /dev/null
+import java.util.*;
+
+public class Hull {
+ static class Point {
+ long x;
+ long y;
+ Point(long x, long y) {
+ this.x = x;
+ this.y = y;
+ }
+ }
+
+ static long dir(Point a, Point b, Point c) {
+ return (b.x - a.x)*(c.y - a.y) - (b.y - a.y)*(c.x - a.x);
+ }
+ static List<Point> hull(Set<Point> pts) {
+ if (pts.isEmpty()) {
+ return new ArrayList<>();
+ }
+ Point s = Collections.min(pts, new Comparator<Point>() {
+ public int compare(Point a, Point b) {
+ int yCmp = Long.compare(a.y, b.y);
+ return yCmp == 0 ? Long.compare(a.x, b.x) : yCmp;
+ }
+ });
+ LinkedList<Point> srt = new LinkedList<>(pts);
+ srt.remove(s);
+ Collections.sort(srt, new Comparator<Point>() {
+ double cos(Point p) {
+ return (p.x - s.x) / Math.sqrt((s.x - p.x)*(s.x - p.x) + (s.y - p.y)*(s.y - p.y));
+ }
+ public int compare(Point a, Point b) {
+ return -Double.compare(cos(a), cos(b));
+ }
+ });
+ srt.addFirst(s);
+ if (srt.size() < 3) {
+ return srt;
+ }
+ LinkedList<Point> out = new LinkedList<>(srt.subList(0, 3));
+ for (Point p : srt.subList(3, srt.size())) {
+ while (dir(out.get(out.size() - 2), out.get(out.size() - 1), p) <= 0) {
+ out.removeLast();
+ }
+ out.add(p);
+ }
+ return out;
+ }
+}
--- /dev/null
+import java.util.*;
+
+public class Test {
+ public static void main(String[] args) {
+ Hull.Point a = new Hull.Point(0, 0);
+ Hull.Point b = new Hull.Point(-2, 2);
+ Hull.Point c = new Hull.Point(0, 4);
+ Hull.Point d = new Hull.Point(2, 2);
+ Hull.Point e = new Hull.Point(0, 2);
+
+ List<Hull.Point> hull = Hull.hull(new HashSet<>(Arrays.asList(new Hull.Point[] {a, b, c, d, e})));
+ assert hull.equals(Arrays.asList(new Hull.Point[] {a, d, c, b}));
+
+ System.out.println("Pass");
+ }
+}
--- /dev/null
+import java.util.*;
+
+public class Usage {
+ public static void main(String[] args) {
+ Hull.Point a = new Hull.Point(0, 3);
+ Hull.Point b = new Hull.Point(-2, 2);
+ Hull.Point c = new Hull.Point(1, -6);
+
+ // construct a set of points for input
+ Set<Hull.Point> points = new HashSet<>(Arrays.asList(new Hull.Point[] {a, b, c}));
+ // or manually:
+ Set<Hull.Point> points2 = new HashSet<>();
+ points2.add(a);
+ points2.add(b);
+ points2.add(c);
+
+ List<Hull.Point> out = Hull.hull(points);
+ System.out.println(out.get(0) == c);
+ System.out.println(out.contains(b));
+ }
+}
--- /dev/null
+.PHONY: test
+
+SOURCES := Hull.java Test.java Usage.java
+
+test: output/Test.class
+ @java -enableassertions -cp output Test
+
+output/Test.class: $(SOURCES)
+ @mkdir -p output
+ javac -d output Test.java Usage.java
--- /dev/null
+import math
+
+def hull(points):
+ if not points:
+ return []
+ sx, sy = s = min(points, key = lambda p: p[::-1])
+ cos = lambda p: (p[0] - sx) / math.sqrt((sx - p[0])**2 + (sy - p[1])**2)
+ dir_ = lambda ax, ay, bx, by, cx, cy: (bx - ax)*(cy - ay) - (by - ay)*(cx - ax)
+ points = [s] + sorted(points - {s}, key = cos, reverse = True)
+ stack = points[:3]
+ for p in points[3:]:
+ while dir_(*stack[-2], *stack[-1], *p) <= 0:
+ stack.pop()
+ stack.append(p)
+ return stack
--- /dev/null
+.PHONY: test
+
+SOURCES := hull.py test.py
+
+test: $(SOURCES)
+ @python3 test.py
--- /dev/null
+from hull import *
+
+points = {(0,0), (-2,2), (0,4), (2,2), (0,2)}
+assert hull(points) == [(0,0), (2,2), (0,4), (-2,2)]
+
+print("Pass")
--- /dev/null
+points = {(0,0), (-2,2), (0,4), (2,2), (0,2)}
+assert hull(points) == [(0,0), (2,2), (0,4), (-2,2)]
--- /dev/null
+import java.util.*;
+
+class FlowNet {
+ Map<Node, Boolean> nodes = new HashMap<>();
+ long value;
+ Node source, sink;
+
+ void addNode(Node n) {
+ nodes.put(n, false);
+ }
+
+ Edge edgeFor(Node one, Node two) {
+ return one.edgeTo.containsKey(two) ? one.edgeTo.get(two) : two.edgeTo.get(one);
+ }
+
+ long findMax() {
+ long value = 0;
+
+ AP augPath = getPath();
+ while (augPath != null) {
+ Node from, to = augPath.path.pop();
+ while (!augPath.path.isEmpty()) {
+ from = to;
+ to = augPath.path.pop();
+ edgeFor(from, to).sendTo(to, augPath.value);
+ }
+ value += augPath.value;
+ augPath = getPath();
+ }
+
+ return value;
+ }
+
+ // for min cut
+ Set<Node> srcSide() {
+ Set<Node> srcSide = new HashSet<>();
+ for (Node n : nodes.keySet()) {
+ if (nodes.get(n)) {
+ srcSide.add(n);
+ }
+ }
+ return srcSide;
+ }
+
+ AP getPath() {
+ Map<Node, Node> prev = new HashMap<>();
+ Queue<Node> q = new LinkedList<>();
+ q.offer(source);
+ prev.put(source, null);
+ while (!q.isEmpty()) {
+ Node n = q.poll();
+ for (Node other : n.adj) {
+ Edge e = edgeFor(n, other);
+ if (e.capTo(other) > 0 && !prev.containsKey(other)) {
+ prev.put(other, n);
+ q.offer(other);
+ }
+ }
+ }
+ for (Node n : nodes.keySet()) {
+ nodes.put(n, prev.keySet().contains(n));
+ }
+
+ if (nodes.get(sink)) {
+ LinkedList<Node> path = new LinkedList<>();
+ long value = Long.MAX_VALUE;
+
+ Node n = sink, p = prev.get(n);
+ path.push(n);
+ while (p != null) {
+ value = Math.min(value, edgeFor(p, n).capTo(n));
+ path.push(p);
+ n = p;
+ p = prev.get(p);
+ }
+
+ AP ap = new AP();
+ ap.path = path;
+ ap.value = value;
+ return ap;
+ } else {
+ return null;
+ }
+ }
+
+ class AP {
+ LinkedList<Node> path;
+ long value;
+ }
+}
+
+class Node {
+ Set<Node> adj = new HashSet<>();
+ Map<Node, Edge> edgeTo = new HashMap<>();
+}
+
+class Edge {
+ Node from, to;
+ long cap, flow;
+
+ Edge(Node f, Node t, long c) {
+ from = f;
+ to = t;
+ cap = c;
+ f.adj.add(t);
+ t.adj.add(f);
+ f.edgeTo.put(t, this);
+ }
+
+ long capTo(Node n) {
+ return n == to ? cap - flow : flow;
+ }
+
+ void sendTo(Node n, long amt) {
+ flow += n == to ? amt : -amt;
+ }
+}
--- /dev/null
+public class Main {
+ public static void main(String[] args) {
+ FlowNet net = new FlowNet();
+ Node s = new Node();
+ Node t = new Node();
+ Node u = new Node();
+ Node v = new Node();
+ for (Node n : new Node[] {s,t,u,v}) {
+ net.addNode(n);
+ }
+ net.source = s;
+ net.sink = t;
+ new Edge(s, u, 20);
+ new Edge(s, v, 10);
+ new Edge(u, v, 30);
+ new Edge(u, t, 10);
+ new Edge(v, t, 20);
+ System.out.println(net.findMax());
+ for (Node n : net.srcSide()) {
+ char name = 0;
+ if (n.equals(s)) name = 's';
+ if (n.equals(t)) name = 't';
+ if (n.equals(u)) name = 'u';
+ if (n.equals(v)) name = 'v';
+ System.out.println(name);
+ }
+ }
+}
--- /dev/null
+Usage:
+
+ FlowNet net = new FlowNet();
+
+ Node s = new Node();
+ Node t = new Node();
+ Node u = new Node();
+ Node v = new Node();
+ for (Node n : new Node[] {s,t,u,v}) {
+ net.addNode(n);
+ }
+ net.source = s;
+ net.sink = t;
+
+ new Edge(s, u, 20);
+ new Edge(s, v, 10);
+ new Edge(u, v, 30);
+ new Edge(u, t, 10);
+ new Edge(v, t, 20);
+
+ System.out.println(net.findMax());
+ System.out.println(net.srcSide());
--- /dev/null
+from collections import deque
+
+class Edge:
+ def __init__(s, frm, to, cap):
+ s.frm = frm
+ s.to = to
+ s.cap = cap
+ s.flow = 0
+
+ def cap_to(s, node):
+ return {s.frm: s.flow, s.to: s.cap - s.flow}[node]
+
+ def add_to(s, node, amt):
+ s.flow += {s.frm: -amt, s.to: amt}[node]
+
+ def other(s, node):
+ return {s.frm: s.to, s.to: s.frm}[node]
+
+class Node:
+ def __init__(s, data = None):
+ s.data = data
+ s.edges = set()
+
+ @staticmethod
+ def edge(f, t, cap):
+ e = Edge(f, t, cap)
+ f.edges.add(e)
+ t.edges.add(e)
+ return e
+
+def ek(nodes, src, sink):
+ def path():
+ prev = {}
+ q = deque([src])
+ while q:
+ n = q.popleft()
+ for e in n.edges:
+ o = e.other(n)
+ if o not in prev and e.cap_to(o) > 0:
+ prev[o] = e
+ q.append(o)
+ d = sink
+ p = deque()
+ while d in prev and d is not src:
+ p.appendleft((prev[d], d))
+ d = prev[d].other(d)
+ return p if d is src else []
+
+ p = path()
+ val = 0
+ while p:
+ amt = min(e.cap_to(d) for e, d in p)
+ val += amt
+ for e, d in p:
+ e.add_to(d, amt)
+ p = path()
+
+ cut_src = set()
+ w = [src]
+ while w:
+ n = w.pop()
+ cut_src.add(n)
+ for e in n.edges:
+ o = e.other(n)
+ if o not in cut_src and e.cap_to(o) != 0:
+ w.append(o)
+
+ return (val, cut_src)
--- /dev/null
+.PHONY: test
+
+SOURCES := flows.py test.py
+
+test: $(SOURCES)
+ @python3 test.py
--- /dev/null
+from flows import *
+
+src, a, b, c, d, e, f, sink = nodes = [Node() for _ in range(8)]
+
+src_to_a = Node.edge(src, a, 4)
+Node.edge(src, b, 4)
+Node.edge(src, c, 2)
+Node.edge(a, d, 3)
+Node.edge(b, e, 3)
+Node.edge(c, e, 3)
+Node.edge(c, f, 1)
+Node.edge(d, sink, 4)
+Node.edge(e, sink, 5)
+Node.edge(f, sink, 5)
+
+val, cut_src = ek(nodes, src, sink)
+
+assert val == 8
+assert src_to_a.cap_to(src) == 3
+
+print("Pass")
--- /dev/null
+# pass a value here to store data in the node (optional)
+src = Node('foo')
+a = Node('bar')
+b = Node()
+sink = Node(1234)
+
+Node.edge(src, a, 5) # add an edge from `src' to `a' with capacity 5
+Node.edge(a, b, 3)
+edge = Node.edge(b, sink, 6) # can capture an edge object for later use
+
+val, cut_src = ek(nodes, src, sink)
+
+assert val == 3 # flow value
+
+print(edge.cap_to(b)) # amount of flow from `b' to `sink' in the saturated network
-# defensively depend on all files in the `algorithms' tree
+# These are more than the files we really need to depend on, but keep things simple.
ALG_FILES := $(shell find algorithms -type f)
+IMPL_FILES := $(shell find impl -type f)
BUILD_CMD := ( cd output && pdflatex -shell-escape ../doc.tex )
output/latex-defines: config.py
python3 config.py
-output/doc.pdf: makefile output/latex-defines doc.tex $(ALG_FILES)
+output/doc.pdf: makefile output/latex-defines doc.tex $(ALG_FILES) $(IMPL_FILES)
# build twice for table of contents
$(BUILD_CMD)
$(BUILD_CMD)
+test:
+ @python3 util/run_all_tests.py
+
clean:
rm -rf output
mkdir output
-.PHONY: clean doc all
+.PHONY: all doc test clean
+++ /dev/null
-# Overview
-
-This project aims to (ultimately) provide a reference document covering any information useful to participants in college programming contests, which typically only allow printed materials. This primarily includes algorithm implementations and documentation, but the project may at some point support building custom selections of language and standard library documentation. The text and programming language coverage are to some extent tailored to use by Oberlin College students.
-
-# Build
-
-The following are currently needed to build the document using the Make build file:
- - Make
- - Python 3
- - `pdflatex' LaTeX compiler
- - LaTeX packages (see `doc.tex')
- - Unix shell environment (typical MacOS or Linux should work)
-
-Currently all LaTeX-related requirements are provided by the TeX Live distribution.
-
-To configure the document build, take a look at `config.py', which contains a configuration dictionary and a mechanism for passing values to LaTeX. To start the build, just run the command `make' from the project root. The document is placed at `output/doc.pdf'.
-
-# Contribution, attribution, and redistribution
-
-This document is intended to be freely editable and redistributable. For more information, see the `license' file. Please ensure that copyright and license restrictions are compatible with this project when adding algorithm implementations based on others' work.
--- /dev/null
+# Overview
+
+This project aims to (ultimately) provide a reference document covering any information useful to participants in college programming contests, which typically only allow printed materials. This primarily includes algorithm implementations and documentation, but the project may at some point support building custom selections of language and standard library documentation. The text and programming language coverage are to some extent tailored to use by Oberlin College students.
+
+# Building the document
+
+The following are currently needed to build the document using the Make build file:
+ - Make
+ - Python 3
+ - `pdflatex` LaTeX compiler
+ - LaTeX packages (see `doc.tex`)
+ - Unix shell environment (typical MacOS or Linux should work)
+
+Currently all LaTeX-related requirements are provided by the TeX Live distribution.
+
+To configure the document build, take a look at `config.py`, which contains a configuration dictionary and a mechanism for passing values to LaTeX. To start the build, just run the command `make` from the project root. The document is placed at `output/doc.pdf`.
+
+In the future, maybe some LaTeX template system could be used to make things cleaner.
+
+# Working with algorithm implementations
+
+Algorithm implementations are found in the `impl` directory. Each implementation includes a usage sample (`usage.py`/`Usage.java`) and a test program (`test.py`/`Test.java`). The usage files are included in the document to show the interface the implementations use.
+
+The test program can be run to verify the implementation works on a nontrivial test case. Just invoke `make` from the directory with the source files. You'll either see "Pass" or an indication of where the test failed.
+
+Note that the document pulls both the source files and the usage files from this location, so references in LaTeX need to be updated if file names are changed.
+
+# Contribution, attribution, and redistribution
+
+This document is intended to be freely editable and redistributable. For more information, see the `license` file. Please ensure that copyright and license restrictions are compatible with this project when adding algorithm implementations based on others' work.
--- /dev/null
+import subprocess
+from pathlib import Path
+
+for alg in Path('impl').iterdir():
+ if alg.is_dir():
+ for lang in alg.iterdir():
+ if lang.is_dir() and lang.joinpath('makefile').exists():
+ print('{}: {}'.format(alg.name, lang.name))
+ subprocess.run(['make', '--no-print-directory', '-C', str(lang)])